Higher-order glass-transition singularities in colloidal systems with attractive interactions.

نویسندگان

  • K Dawson
  • G Foffi
  • M Fuchs
  • W Götze
  • F Sciortino
  • M Sperl
  • P Tartaglia
  • T Voigtmann
  • E Zaccarelli
چکیده

The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass line and a glass-glass-transition line are found in the temperature-density plane of the model. For small well-width values, the glass-glass-transition line terminates in a third-order bifurcation point, i.e., in a A3 (cusp) singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth-order A4 (swallow-tail) singularity at a critical well width. Close to the A3 and A4 singularities the decay of the density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mode-Coupling Theory of Colloids with Short-range Attractions

Within the framework of the mode-coupling theory of super-cooled liquids, we investigate new phenomena in colloidal systems on approach to their glass transitions. When the inter-particle potential contains an attractive part, besides the usual repulsive hard core, two intersecting liquid-glass transition lines appear, one of which extends to low densities, while the other one, at high densitie...

متن کامل

Nonergodicity transitions in colloidal suspensions with attractive interactions.

Colloidal gel and glass transitions are investigated using the idealized mode coupling theory (MCT) for model systems characterized by short-range attractive interactions. Results are presented for adhesive hard sphere and hard core attractive Yukawa systems. According to MCT, the former system shows a critical glass transition concentration that increases significantly with introduction of a w...

متن کامل

Evidence of a higher-order singularity in dense short-ranged attractive colloids.

We study a model in which particles interact through a hard-core repulsion complemented by a short-ranged attractive potential of the kind found in colloidal suspensions. Combining theoretical and numerical work we locate the line of higher-order glass-transition singularities and its end point-named A4-on the fluid-glass line. Close to the A4 point, we detect logarithmic decay of density corre...

متن کامل

Discontinuous nature of the repulsive-to-attractive colloidal glass transition

In purely repulsive colloidal systems a glass transition can be reached by increasing the particle volume fraction beyond a certain threshold. The resulting glassy state is governed by configurational cages which confine particles and restrict their motion. A colloidal glass may also be formed by inducing attractive interactions between the particles. When attraction is turned on in a repulsive...

متن کامل

Particle dynamics in colloidal suspensions above and below the glass-liquid re-entrance transition

We study colloidal particle dynamics of a model glass system using confocal and fluorescence microscopy as the sample evolves from a hard-sphere glass to a liquid with attractive interparticle interactions. The transition from hard-sphere glass to attractive liquid is induced by short-range depletion forces. The development of liquid-like structure is indicated by particle dynamics. We identify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 63 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001